THREE-PHASE BARKER ARRAYS

JASON P. BELL, JONATHAN JEDWAB, MAHDAD KHATIRINEJAD, AND KAI-UWE SCHMIDT

Abstract

A 3-phase Barker array is a matrix of third roots of unity for which all out-of-phase aperiodic autocorrelations have magnitude 0 or 1. The only known truly two-dimensional 3-phase Barker arrays have size 2×2 or 3×3. We use a mixture of combinatorial arguments and algebraic number theory to establish severe restrictions on the size of a 3phase Barker array when at least one of its dimensions is divisible by 3 . In particular, there exists a double-exponentially growing arithmetic function T such that no 3-phase Barker array of size $s \times t$ with $3 \mid t$ exists for all $t<T(s)$. For example, $T(5)=4860, T(10)>10^{11}$, and $T(20)>10^{214}$. When both dimensions are divisible by 3 , the existence problem is settled completely: if a 3 -phase Barker array of size $3 r \times 3 q$ exists, then $r=q=1$.

1. Introduction

We define an array of size $s \times t$ to be an infinite matrix $A=\left(a_{i j}\right)$ of complex-valued elements satisfying

$$
a_{i j}=0 \text { unless } 0 \leq i<s \text { and } 0 \leq j<t .
$$

We call A an H-phase array if $a_{i j}$ is an H-th root of unity for each i, j satisfying $0 \leq i<s$ and $0 \leq j<t$. For integers u and v, the aperiodic autocorrelation of $A=\left(a_{i j}\right)$ at shift (u, v) is defined to be

$$
C_{A}(u, v)=\sum_{i, j} a_{i j} \overline{a_{i+u, j+v}} .
$$

Notice that $C_{A}(u, v)=0$ for $|u| \geq s$ or $|v| \geq t$. Arrays with small aperiodic autocorrelation at all nonzero shifts have a wide range of applications in digital communications, including synchronisation [Bar53] and radar [AS89].

[^0]We would like to find 2-phase arrays A of size $s \times t$ satisfying

$$
\begin{equation*}
\left|C_{A}(u, v)\right| \leq 1 \quad \text { for all }(u, v) \neq(0,0), \tag{1}
\end{equation*}
$$

in which case A is called a Barker array [AS89]. However, the only $s \times t$ Barker arrays with $s, t>1$ have size 2×2, as conjectured by Alquaddoomi and Scholtz [AS89] and proved by Davis, Jedwab, and Smith [DJS07]. See Leung and B. Schmidt [LS12] for recent nonexistence results for Barker sequences (namely $1 \times t$ Barker arrays).

A possible alternative to Barker arrays is to consider H-phase arrays A satisfying (1), in which case we call A an H-phase Barker array. In order to allow efficient implementation, it is desirable to limit H to a small number, and we will be interested in the case $H=3$. Alquaddoomi and Scholtz [AS89] exhibited the 3-phase Barker array

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right],
$$

where throughout this paper ω denotes a primitive third root of unity (note that the Barker property of a 3-phase array does not depend on the particular choice of ω). Another example is

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & \omega
\end{array}\right] .
$$

There also exist 3-phase Barker sequences of length t for $t \in\{2,3,4,5,7,9\}$ [GS65], but it has been conjectured since at least 1968 [Tur68, p. 211] that no further such sequences exist.

We adapt some of the ideas in [DJS07], used to establish the nonexistence result for 2-phase Barker arrays, and combine them with new combinatorial and algebraic number theoretic arguments to prove severe restrictions on the size of 3 -phase Barker arrays of size $s \times t$ when $s t$ is divisible by 3. In particular, there exists a double-exponentially growing arithmetic function T such that no 3 -phase Barker array of size $s \times t$ with $3 \mid t$ exists for all $t<T(s)$. For example,

$$
T(5)=4860, T(10)>10^{11}, \text { and } T(20)>10^{214} .
$$

When both dimensions are divisible by 3 , the existence problem is settled completely: if a 3-phase Barker array of size $3 r \times 3 q$ exists, then $r=q=1$.

2. Semiperiodic autocorrelation of a 3-Phase Barker array

Given an array $A=\left(a_{i j}\right)$ of size $s \times t$ and integers u and v, we follow Alquaddoomi and Scholtz [AS89, Sec. V] and define the semiperiodic autocorrelation of A at displacement (u, v) to be

$$
\begin{equation*}
P_{A}(u, v)=C_{A}(u, v)+C_{A}(u, v-t) \quad \text { for } 0 \leq v<t . \tag{2}
\end{equation*}
$$

By convention, any expression involving $P_{A}(u, v)$ implicitly refers only to values of (u, v) for which $P_{A}(u, v)$ is defined. In terms of the elements of A, we can write

$$
P_{A}(u, v)=\sum_{i} \sum_{j=0}^{t-1} a_{i j} \overline{a_{i+u,(j+v) \bmod t}} .
$$

In the following lemma, we establish restrictions on $P_{A}(u, v)$ when A is a 3 -phase array. We then apply this lemma to 3 -phase Barker arrays of size $s \times t$ with $3 \mid t$. This generalises Turyn's analysis [Tur68], [Tur74] of the one-dimensional case.

Lemma 1. Let $A=\left(a_{i j}\right)$ be a 3-phase array of size $s \times t$ and write

$$
P_{A}(u, v)=Q_{A}(u, v)+\omega R_{A}(u, v),
$$

where $Q_{A}(u, v)$ and $R_{A}(u, v)$ are integer-valued. Then

$$
\begin{equation*}
Q_{A}(u, v) \equiv Q_{A}\left(u, v^{\prime}\right) \quad(\bmod 3) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{A}(u, v) \equiv R_{A}\left(u, v^{\prime}\right) \quad(\bmod 3) \tag{4}
\end{equation*}
$$

for all $\left(u, v, v^{\prime}\right)$.
Proof. Since $P_{A}(u, v)$ is a sum of $(s-|u|) t$ terms, each of which is a third root of unity, we can write

$$
P_{A}(u, v)=B_{0}+B_{1} \omega+B_{2} \omega^{2}
$$

for nonnegative integers B_{0}, B_{1}, and B_{2} satisfying

$$
\begin{equation*}
B_{0}+B_{1}+B_{2}=(s-|u|) t . \tag{5}
\end{equation*}
$$

Using the identity $\omega^{2}=-1-\omega$, we find that

$$
P_{A}(u, v)=\left(B_{0}-B_{2}\right)+\left(B_{1}-B_{2}\right) \omega .
$$

We therefore have

$$
Q_{A}(u, v)+R_{A}(u, v)=B_{0}+B_{1}-2 B_{2},
$$

which together with (5) gives

$$
\begin{equation*}
Q_{A}(u, v)+R_{A}(u, v) \equiv(s-|u|) t \quad(\bmod 3) . \tag{6}
\end{equation*}
$$

Now consider the product

$$
\prod_{i} \prod_{j=0}^{t-1} a_{i j} \overline{a_{i+u,(j+v) \bmod t}}=1^{B_{0}} \omega^{B_{1}}\left(\omega^{2}\right)^{B_{2}}=\omega^{B_{1}-B_{2}}=\omega^{R_{A}(u, v)},
$$

which is independent of v. This proves assertion (4) and assertion (3) then follows from (6).

Lemma 2. Suppose that A is a 3-phase Barker array of size $s \times t$ with $3 \mid t$. Then

$$
P_{A}(u, v)=0 \quad \text { for all }(u, v) \neq(0,0) .
$$

Proof. Note that in $\mathbb{Q}(\omega)$ we have the factorisation

$$
a+b \omega+c \omega^{2}=((a-d)+(d-c) \omega)(1-\omega),
$$

where $d=(a+b+c) / 3$. Hence every sum of $3 m$ third roots of unity is divisible by $1-\omega$ over $\mathbb{Z}[\omega]$. Furthermore, 0 is the only element of $\mathbb{Z}[\omega]$ that has magnitude at most 1 and is divisible by $1-\omega$.

Since $C_{A}(u, 0)$ is a sum of $(s-|u|) t$ third roots of unity for $|u|<s$, and by assumption $3 \mid t$, the Barker property (1) then forces $C_{A}(u, 0)=0$ for all $u \neq 0$. Hence $P_{A}(u, 0)=C_{A}(u, 0)+C_{A}(u,-t)=0$ for all $u \neq 0$. Also, since $P_{A}(0,0)=s t$, we conclude that $P_{A}(u, 0)$ is an integer divisible by 3 for all u. Then, for arbitrary u and v, Lemma 1 implies that $P_{A}(u, v)=3 n+3 n^{\prime} \omega$ for some integers n and n^{\prime} (depending on u and v). On the other hand, by the definition (2) of $P_{A}(u, v)$ and the Barker property, we have $\left|P_{A}(u, v)\right| \leq 2$ for $(u, v) \neq(0,0)$. Hence $P_{A}(u, v)=0$ for all $(u, v) \neq(0,0)$.

Lemma 2 is now used to prove the following result, which will be our main tool for the remainder of this paper.

Proposition 3. Suppose that $A=\left(a_{i j}\right)$ is a 3-phase Barker array of size $s \times t$ with $3 \mid t$, and write $f_{i}(x)=\sum_{j} a_{i j} x^{j}$. Let ζ be a t-th root of unity. Then there exists some $I=I(\zeta)$ satisfying $0 \leq I<s$ such that

$$
\left|f_{i}(\zeta)\right|^{2}= \begin{cases}0 & \text { for } i \neq I \\ \text { st } & \text { for } i=I\end{cases}
$$

Proof. Define the polynomial

$$
g(y)=\sum_{i} f_{i}(\zeta) y^{i}=\sum_{i, j} a_{i j} y^{i} \zeta^{j} .
$$

Straightforward manipulations give

$$
g(y) \overline{g\left(y^{-1}\right)}=\sum_{u, v} P_{A}(u, v) y^{-u} \zeta^{-v},
$$

so that by Lemma $2, g(y) \overline{g\left(y^{-1}\right)}=s t$. This forces $g(y)$ to be a monomial, for if $c_{k} y^{k}$ and $c_{\ell} y^{\ell}$ are the highest-degree and lowest-degree monomials in $g(y)$, respectively, and $k>\ell$, then $g(y) \overline{g\left(y^{-1}\right)}$ contains $c_{k} \overline{c_{\ell}} y^{k-\ell}$. Therefore, $g(y)=c y^{I}$ for some $c \in \mathbb{Q}(\omega, \zeta)$ of magnitude $\sqrt{s t}$ and some $I=I(\zeta)$ satisfying $0 \leq I<s$, which completes the proof.

If a 3 -phase Barker array of size $s \times t$ with $3 \mid t$ exists, then Proposition 3 determines a partition of the t-th roots of unity into s sets. Moreover, if ζ belongs to one of these sets, then all roots of the minimal polynomial of ζ over $\mathbb{Q}(\omega)$ must belong to the same set.

For later reference, we note that, if ζ is a primitive m-th root of unity, then the degree of the minimal polynomial of ζ over $\mathbb{Q}(\omega)$ is $\phi(m) / 2$ if $3 \mid m$ and is $\phi(m)$ otherwise (and so in this case the minimal polynomial is the m-th cyclotomic polynomial).

3. Consequences of Proposition 3

In this section, we use Proposition 3 to prove severe restrictions on the size of a 3-phase Barker array. Throughout this section, we use the following notation. For a positive integer n, we let ζ_{n} denote the primitive n-th root of unity $e^{2 \pi i / n}$. Given a prime p and a nonzero integer n, we let $\nu_{p}(n)$ denote the p-adic valuation of n; that is, $\nu_{p}(n)$ is the unique nonnegative integer with the property that $p^{\nu_{p}(n)}$ divides n but $p^{\nu_{p}(n)+1}$ does not.

We begin with an elementary result that restricts the prime divisors of the number of nonzero elements in a 3-phase Barker array.

Theorem 4. Suppose that there exists a 3-phase Barker array of size $s \times t$ with $3 \mid t$. Then $\nu_{p}(s t)$ is even for every prime $p \equiv 2(\bmod 3)$.

Proof. Taking $\zeta=1$ in Proposition 3, we see that $s t=v \bar{v}$ for some $v \in \mathbb{Z}[\omega]$. In $\mathbb{Z}[\omega]$, the prime 3 ramifies and primes $p \equiv 1(\bmod 3)$ split, whereas primes $p \equiv 2(\bmod 3)$ remain inert. The theorem follows.

For example, there are no 3 -phase Barker arrays of size $2 \times 3,5 \times 9$, and 10×15.

If there exists a 3 -phase Barker array of size $s \times t$ with $3 \mid t$, then Proposition 3 determines a partition of the t-th roots of unity into s sets. We now show that all of these sets must have equal size t / s, which forces s to divide t.

Theorem 5. Suppose that there exists a 3-phase Barker array $\left(a_{i j}\right)$ of size $s \times t$ with $3 \mid t$, and write $f_{i}(x)=\sum_{j} a_{i j} x^{j}$. Then, for each i satisfying $0 \leq i<s$,

$$
\left|\left\{k \in \mathbb{Z} / t \mathbb{Z}: f_{i}\left(\zeta_{t}^{k}\right) \neq 0\right\}\right|=t / s
$$

In particular, s divides t.
Proof. If $\left(a_{i j}\right)$ is an arbitrary array of size $s \times t$, then, for each i,

$$
\frac{1}{s t} \sum_{k=0}^{t-1}\left|f_{i}\left(\zeta_{t}^{k}\right)\right|^{2}=\frac{1}{s t} \sum_{k=0}^{t-1}\left|\sum_{j=0}^{t-1} a_{i j} \zeta_{t}^{k j}\right|^{2}=\frac{1}{s} \sum_{j=0}^{t-1}\left|a_{i j}\right|^{2}
$$

by Parseval's identity. If $\left(a_{i j}\right)$ is a 3-phase Barker array, the right-hand side equals t / s for each i satisfying $0 \leq i<s$ and, by Proposition 3 , the left-hand side counts the number of $k \in \mathbb{Z} / t \mathbb{Z}$ such that $f_{i}\left(\zeta_{t}^{k}\right) \neq 0$.

Theorem 5 can be used to prove the following nonexistence result.
Theorem 6. Suppose that there exists a 3-phase Barker array of size $s \times t$ with $3 \mid s$ and $3 \mid t$. Then $s=t=3$.

Proof. Write the 3-phase Barker array as $A=\left(a_{i j}\right)$. By application of Theorem 5 to A and A^{T} (which is also a 3-phase Barker array), we conclude
that $s \mid t$ and $t \mid s$, hence $s=t$. By Proposition 3, there exists some I satisfying $0 \leq I<s$ for which

$$
\left|\sum_{j=0}^{t-1} a_{I j} \zeta_{t}^{j}\right|=t
$$

Hence, $\arg \left(a_{I j} \zeta_{t}^{j}\right)$ is constant for all j satisfying $0 \leq j<t$, forcing $s=t=3$ since $a_{I j} \in\left\{1, \omega, \omega^{2}\right\}$.

Combining Theorems 5 and 6 shows for example that, if there exists a 3 -phase Barker array of size $s \times 3^{n}$ with $n \geq 2$, then $s=1$; it then follows from [Tur68, pp. 205 and 211] that $n=2$.

Recall that, if a 3-phase Barker array of size $s \times t$ with $3 \mid t$ exists, then Proposition 3 partitions the t-th roots of unity into s sets, according to the associated value of I, and by Theorem 5 each of these sets has size t / s. In Theorems 10 and 11 below, we derive constraints on the possible values of s and t. Our strategy in the proof of Theorem 10 will be to write $t=3^{n} q$, where $3 \nmid q$, and determine an upper and lower bound on the number of distinct values of I associated with the following 3^{n}-th roots of unity:

$$
1, \zeta_{3}, \zeta_{3}^{2}, \zeta_{9}, \zeta_{9}^{2}, \ldots, \zeta_{3^{n}}, \zeta_{3^{n}}^{2}
$$

Our strategy in the proof of Theorem 11 will be to write $t=t_{0} r$, where $3 \mid t_{0}$ and $3 \nmid r$ and r is square-free, and determine a lower bound on the size of the set associated with a specific primitive t_{0}-th root of unity. In preparation for these theorems, we prove the following result.

Proposition 7. Let n and $t>0$ be integers, and let p be a prime divisor of t. Suppose that a polynomial $f \in \mathbb{Z}[\omega][x]$ has the property that for each t th root of unity $\zeta,|f(\zeta)|^{2}$ is integral and $\nu_{p}\left(|f(\zeta)|^{2}\right)=n$ whenever $f(\zeta) \neq 0$. Suppose also that η is a t-th root of unity whose order is not divisible by p and that $f(\eta) \neq 0$. Then:
(i) In the case $p \neq 3$,

$$
\left\{j \in\left\{1,2, \ldots, \nu_{p}(t)\right\}: f\left(\eta \cdot \zeta_{p^{j}}\right) \neq 0\right\}
$$

has cardinality at least $\nu_{p}(t)-n / 2$ and, for each k coprime to p, $f\left(\eta \cdot \zeta_{p^{j}}\right)=0$ if and only if $f\left(\eta \cdot \zeta_{p^{j}}^{k}\right)=0$.
(ii) In the case $p=3$,

$$
\begin{equation*}
\left\{(j, k) \in\left\{1,2, \ldots, \nu_{3}(t)\right\} \times\{1,2\}: f\left(\eta \cdot \zeta_{3^{j}}^{k}\right) \neq 0\right\} \tag{7}
\end{equation*}
$$

has cardinality at least $2 \nu_{3}(t)-n$, and, for each k and ℓ satisfying $0 \not \equiv k \equiv \ell(\bmod 3), f\left(\eta \cdot \zeta_{3 j}^{k}\right)=0$ if and only if $f\left(\eta \cdot \zeta_{3 j}^{\ell}\right)=0$.
(iii) In the case $p=3$, suppose further that $f(1) \neq 0$ and $0<\nu_{3}\left(|f(1)|^{2}\right)<$ $2 \nu_{3}(t)$ and

$$
f(x)-\left(1+x+\cdots+x^{t-1}\right) \in(1-\omega) \mathbb{Z}[\omega][x] .
$$

Then the set (7) has cardinality at least $2 \nu_{3}(t)-n+1$.

Before we prove Proposition 7, we introduce some standard notation and prove an auxiliary result. Let $\Phi_{n}(x)$ be the n-th cyclotomic polynomial. The following result can be easily proved by induction (see [Lan94, p. 74], for example) or by Möbius inversion of $n=\prod_{d \mid n, d>1} \Phi_{d}(1)$.
Lemma 8. Let $n>1$ be an integer. If n is a power of a prime p, then $\Phi_{n}(1)=p$; otherwise, $\Phi_{n}(1)=1$.

Given a finite extension K of \mathbb{Q} and $\alpha \in K$, we let $N^{K}(\alpha)$ denote the norm of α; that is, $N^{K}(\alpha)$ is the product of $\sigma(\alpha)$, where σ ranges over the $[K: \mathbb{Q}]$ complex embeddings of K into \mathbb{C}.

Lemma 9. Let n be a positive integer, let d and p be divisors of n with p prime, and write $K=\mathbb{Q}\left(\zeta_{n}\right)$. Let ζ be a primitive d-th root of unity. Then

$$
\nu_{p}\left(N^{K}(1-\zeta)\right)= \begin{cases}\phi(n) / \phi(d) & \text { if } d \text { is a power of } p \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. Since K is a Galois extension of \mathbb{Q}, we have

$$
N^{K}(1-\zeta)=\prod_{\sigma \in \operatorname{Gal}(K)}(1-\sigma(\zeta)),
$$

where $\operatorname{Gal}(K)$ denotes the group of field automorphisms of K. Let $F=\mathbb{Q}(\zeta)$, so that F is a Galois extension of \mathbb{Q} of degree $\phi(d)$ and K is a Galois extension of F of degree $\phi(n) / \phi(d)$. Each automorphism of F lifts to $\phi(n) / \phi(d)$ automorphisms of K, and therefore,

$$
N^{K}(1-\zeta)=\prod_{\tau \in \operatorname{Gal}(F)}(1-\tau(\zeta))^{\phi(n) / \phi(d)}
$$

Since

$$
\prod_{\tau \in \operatorname{Gal}(F)}(1-\tau(\zeta))=\prod_{\substack{j=1 \\(j, d)=1}}^{d}\left(1-\zeta_{d}^{j}\right)=\Phi_{d}(1),
$$

we find that

$$
\nu_{p}\left(N^{K}(1-\zeta)\right)=\nu_{p}\left(\Phi_{d}(1)\right) \phi(n) / \phi(d) .
$$

The result now follows from Lemma 8.
We are now ready to prove Proposition 7.
Proof of Proposition 7. We first prove (i). Since the order of η is not divisible by p and $p \neq 3$, we have

$$
\left[\mathbb{Q}\left(\omega, \eta, \zeta_{p^{j}}\right): \mathbb{Q}(\omega, \eta)\right]=\left[\mathbb{Q}\left(\zeta_{p^{j}}\right): \mathbb{Q}\right]
$$

for each natural number j. In particular, the identity automorphism of $\mathbb{Q}(\omega, \eta)$ lifts to exactly $\phi\left(p^{j}\right)$ distinct automorphisms of $\mathbb{Q}\left(\omega, \eta, \zeta_{p^{j}}\right)$. If σ is one of these $\phi\left(p^{j}\right)$ liftings, then σ extends naturally to polynomials in $\mathbb{Q}\left(\omega, \eta, \zeta_{p^{j}}\right)[x]$. Then, since $\sigma(f)=f$, we have $f\left(\eta \cdot \zeta_{p^{j}}\right)=0$ if and only if $f\left(\eta \cdot \sigma\left(\zeta_{p^{j}}\right)\right)=0$. But as σ ranges over the $\phi\left(p^{j}\right)$ liftings of the identity
automorphism of $\mathbb{Q}(\omega, \eta)$, the image $\sigma\left(\zeta_{p^{j}}\right)$ ranges over all primitive p^{j}-th roots of unity, proving the second part of (i).

Now write $S=\left\{j \in\left\{1,2, \ldots, \nu_{p}(t)\right\}: f\left(\eta \cdot \zeta_{p^{j}}\right)=0\right\}$ and $K=\mathbb{Q}\left(\zeta_{t}\right)$. We must show that $|S| \leq n / 2$. If $j \in S$, then we have $f\left(\eta \cdot \zeta_{p^{j}}^{k}\right)=0$ for all k coprime to p^{j}. Thus

$$
g(x)=\prod_{j \in S} \prod_{\substack{k=1 \\(k, p)=1}}^{p^{j}}\left(x-\eta \cdot \zeta_{p^{j}}^{k}\right)
$$

divides $f(x)$ in $\mathbb{Z}\left[\zeta_{t}\right][x]$. It follows that $N^{K}(g(\eta))$ divides $N^{K}(f(\eta))$ and hence

$$
\begin{equation*}
\nu_{p}\left(N^{K}(g(\eta))\right) \leq \nu_{p}\left(N^{K}(f(\eta))\right)=\phi(t) n / 2 \tag{8}
\end{equation*}
$$

using $\nu_{p}\left(|f(\eta)|^{2}\right)=n$. From Lemma 9 with $n=t$ and $d=p^{j}$ and $\zeta=\zeta_{p^{j}}^{k}$, we find that

$$
\begin{aligned}
\nu_{p}\left(N^{K}(g(\eta))\right) & =\sum_{j \in S} \sum_{\substack{k=1 \\
(k, p)=1}}^{p^{j}} \nu_{p}\left(N^{K}\left(\eta-\eta \cdot \zeta_{p^{j}}^{k}\right)\right) \\
& =\sum_{j \in S} \sum_{\substack{k=1 \\
(k, p)=1}}^{p^{j}} \nu_{p}\left(N^{K}\left(1-\zeta_{p^{j}}^{k}\right)\right) \\
& =\sum_{j \in S} \sum_{\substack{k=1 \\
(k, p)=1}}^{p^{j}} \frac{\phi(t)}{\phi\left(p^{j}\right)} \\
& =\sum_{j \in S} \phi(t) \\
& =\phi(t)|S|
\end{aligned}
$$

Thus, after combination with (8), we get $|S| \leq n / 2$, as required.
The proof of (ii) is similar to (i), except that we now have

$$
\left[\mathbb{Q}\left(\omega, \eta, \zeta_{3^{j}}\right): \mathbb{Q}(\omega, \eta)\right]=\frac{1}{2} \cdot\left[\mathbb{Q}\left(\zeta_{3^{j}}\right): \mathbb{Q}\right]
$$

and, if $\zeta_{3^{j}}^{k}$ and $\zeta_{3^{j}}^{\ell}$ are two primitive 3^{j}-th roots of unity, then, among the $\phi\left(3^{j}\right) / 2$ liftings of the identity automorphism of $\mathbb{Q}(\omega, \eta)$ to $\mathbb{Q}\left(\omega, \eta, \zeta_{3^{j}}\right)$, there is one that sends $\zeta_{3^{j}}^{k}$ to $\zeta_{3^{j}}^{\ell}$ if and only if $k \equiv \ell(\bmod 3)$. The remainder of the argument is identical to that employed in establishing (i), taking

$$
S=\left\{(j, k) \in\left\{1,2, \ldots, \nu_{3}(t)\right\} \times\{1,2\}: f\left(\eta \cdot \zeta_{3^{j}}^{k}\right)=0\right\}
$$

and

$$
g(x)=\prod_{(j, k) \in S} \prod_{\substack{\ell=1 \\ k \equiv \ell(\bmod 3)}}^{3^{j}}\left(x-\eta \cdot \zeta_{3^{j}}^{\ell}\right)
$$

to show that $|S| \leq n$.
We shall now prove (iii) by applying (ii), with n replaced by $n-1$, to

$$
f_{0}(x)=(1-\omega)^{-1} \cdot\left(f(x)-\left(1+x+\cdots+x^{t-1}\right)\right) .
$$

By assumption, $f_{0} \in \mathbb{Z}[\omega][x]$. From the assumptions, we also have $f(1) \neq 0$ and so $\nu_{3}\left(|f(1)|^{2}\right)=n$ and so $0<n<2 \nu_{3}(t)$. Let ζ be a t-th root of unity. We need to show that $\left|f_{0}(\zeta)\right|^{2}$ is integral and that $\nu_{3}\left(\left|f_{0}(\zeta)\right|^{2}\right)=n-1$ whenever $f_{0}(\zeta) \neq 0$. In the case that $\zeta \neq 1$, this follows from $\left|f_{0}(\zeta)\right|^{2}=$ $|f(\zeta)|^{2} / 3$ and the assumption that $\nu_{3}\left(|f(\zeta)|^{2}\right)=n>0$ whenever $f(\zeta) \neq 0$. In the case that $\zeta=1$, we have $\left|f_{0}(1)\right|^{2}=|f(1)-t|^{2} / 3$. Since $n<2 \nu_{3}(t)$, by extending the 3-adic valuation ν_{3} from \mathbb{Z} to $\mathbb{Z}[\omega]$ via $\nu_{3}(1-\omega)=1 / 2$ we find that $\nu_{3}(f(1))<\nu_{3}(t)$ and so $\nu_{3}\left(\left|f_{0}(1)\right|^{2}\right)=n-1$, as required. These calculations also show that $f_{0}(\eta) \neq 0$. We may therefore apply (ii), with n replaced by $n-1$, to $f_{0}(x)$. Since the order of η is not divisible by 3 , we have $f_{0}\left(\eta \cdot \zeta_{3 j}^{k}\right)=(1-\omega)^{-1} f\left(\eta \cdot \zeta_{3 j}^{k}\right)$ for all $(j, k) \in\left\{1,2, \ldots, \nu_{3}(t)\right\} \times\{1,2\}$ and we therefore obtain (iii).

We next prove two consequences of Propositions 3 and 7.
Theorem 10. Suppose that there exists a 3-phase Barker array of size $s \times t$ with $3 \mid t$ and $3 \nmid s$. Then $s \leq \nu_{3}(t)$.

Proof. Let $\left(a_{i j}\right)$ be the 3-phase Barker array and write $f_{i}(x)=\sum_{j} a_{i j} x^{j}$. Let $n=\nu_{3}(t)$, so that $t=3^{n} q$ for some q not divisible by 3 .

We write $V=\{1,2, \ldots, n\} \times\{1,2\}$ and consider the cardinality of the set

$$
R=\left\{I\left(\zeta_{3^{j}}^{k}\right):(j, k) \in V\right\},
$$

with the function I as given in Proposition 3.
We know from Proposition 3 that $\left|f_{I(1)}(\zeta)\right|^{2}$ is either 0 or st for each t-th root of unity ζ, and by definition $f_{I(1)}(1) \neq 0$. Since $3 \nmid s$, we have $\nu_{3}(s t)=\nu_{3}(t)=n$. Then, taking $\eta=1$ and $f=f_{I(1)}$ in Proposition 7 (iii), we find that $\left\{(j, k) \in V: f_{I(1)}\left(\zeta_{3 j}^{k}\right) \neq 0\right\}$ has cardinality at least $n+1$. Therefore, by Proposition 3, the number of values $(j, k) \in V$ for which $I\left(\zeta_{3 j}^{k}\right)=I(1)$ is at least $n+1$, hence $|R| \leq n$.

On the other hand, fix a value $i \in\{0,1, \ldots, s-1\} \backslash\{I(1)\}$ and let τ be a primitive 3^{n}-th root of unity. Then

$$
\begin{aligned}
\frac{1}{3^{n}} \sum_{\ell=0}^{3^{n}-1}\left|f_{i}\left(\tau^{\ell}\right)\right|^{2} & =\frac{1}{3^{n}} \sum_{\ell=0}^{3^{n}-1}\left|\sum_{j=0}^{3^{n}-1} \tau^{j \ell} \sum_{k=0}^{q-1} a_{i, k \cdot 3^{n}+j}\right|^{2} \\
& =\sum_{j=0}^{3^{n}-1}\left|\sum_{k=0}^{q-1} a_{i, k \cdot 3^{n}+j}\right|^{2}
\end{aligned}
$$

by Parseval's identity. Since $3 \nmid q$, the right-hand side is nonzero and so $f_{i}\left(\tau^{\ell}\right)$ is nonzero for some integer ℓ. Now the polynomial $x^{3^{n}}-1$ splits into
$2 n+1$ irreducible factors over $\mathbb{Q}(\omega)$, and the minimal polynomials over $\mathbb{Q}(\omega)$ of

$$
1, \zeta_{3}, \zeta_{3}^{2}, \zeta_{9}, \zeta_{9}^{2}, \ldots, \zeta_{3^{n}}, \zeta_{3^{n}}^{2}
$$

are all distinct. Since the value of I in Proposition 3 is the same for all roots of a given minimal polynomial, it follows that $f_{i}\left(\zeta_{3 j}^{k}\right)$ is nonzero for some $(j, k) \in V$. Therefore, for each $i \in\{0,1, \ldots, s-1\} \backslash\{I(1)\}$, there is at least one value of $(j, k) \in V$ for which $I\left(\zeta_{3 j}^{k}\right)=i$, hence $|R| \geq s$.

Combining results, we find that $s \leq n$.
Theorem 11. Suppose that there exists a 3-phase Barker array of size $s \times t$ with $3 \mid t$. Write $t=t_{0} r$, where r is the product of all primes $p \neq 3$ dividing t such that $\nu_{p}($ st $)=1$. Then

$$
\prod_{p \mid t_{0}}(1-1 / p) \leq 2 / s
$$

where the product is taken over all prime divisors of t_{0}.
Proof. Since $s \mid t$ by Theorem $5, \nu_{p}(s t)=1$ implies $\nu_{p}(t)=1$ for every prime p. Let $\left(a_{i j}\right)$ be the 3 -phase Barker array and write $f_{i}(x)=\sum_{j} a_{i j} x^{j}$. Let η be a primitive t_{0}-th root of unity. By Proposition 3, there exists I such that $\left|f_{I}(\eta)\right|^{2}=s t$, and $\left|f_{I}(\zeta)\right|^{2}$ is either 0 or st for each t-th root of unity ζ. Let d be a divisor of r, noting that d is square-free and not divisible by 3 . We claim that

$$
\begin{equation*}
f_{I}\left(\eta \cdot \zeta_{d}^{k}\right) \neq 0 \text { for all } k \text { coprime to } d, \tag{9}
\end{equation*}
$$

which we prove by induction on the number of prime divisors of d. In the case that d is prime, (9) is an immediate consequence of Proposition 7 (i). Now, suppose that (9) is true for all d having at most $\ell-1$ prime divisors. If d has ℓ prime divisors, write $d=d^{\prime} p$ for some prime divisor p of d and let k be coprime to d. Then $\zeta_{d}^{p+d^{\prime}}=\zeta_{d^{\prime}} \cdot \zeta_{p}$ and so

$$
f_{I}\left(\eta \cdot \zeta_{d}^{\left(p+d^{\prime}\right) k}\right)=f_{I}\left(\eta \cdot \zeta_{d^{\prime}}^{k} \cdot \zeta_{p}^{k}\right) \neq 0
$$

by the inductive hypothesis and by Proposition 7 (i) with $n=1$ and $f=f_{I}$ and η replaced by $\eta \cdot \zeta_{d^{\prime}}^{k}$. Since $\left(p+d^{\prime}, d\right)=1$ (because d is square-free), this implies that (9) is true when d has ℓ prime divisors and so completes the induction.

Now, since $3 \mid t_{0}$ and $\left(t_{0}, d\right)=1$, the minimal polynomial of $\eta \cdot \zeta_{d}$ over $\mathbb{Q}(\omega)$ has degree $\phi\left(t_{0} d\right) / 2=\phi\left(t_{0}\right) \phi(d) / 2$. Since $f_{I}\left(\eta \cdot \zeta_{d}\right) \neq 0$ for all $d \mid r$ by (9), we conclude that

$$
\left|\left\{k \in \mathbb{Z} / t \mathbb{Z}: f_{I}\left(\zeta_{t}^{k}\right) \neq 0\right\}\right| \geq \sum_{d \mid r} \phi\left(t_{0}\right) \phi(d) / 2=\phi\left(t_{0}\right) r / 2 .
$$

Thus, by Theorem $5, t / s \geq \phi\left(t_{0}\right) r / 2$, and so $\phi\left(t_{0}\right) / t_{0} \leq 2 / s$, from which the theorem follows.

TABLE 1. Restrictions on t for a 3-phase Barker array of size $s \times t$ with $3 \mid t$.

s	$t \geq$
2	18
4	324
5	4860
7	61236
8	64297800
10	591671570490
11	466344774195300
13	548127023739189674570891100

4. Explicit bounds on s and t

In this section, we consider the existence of a 3 -phase Barker array of size $s \times t$ with $3 \mid t$. We combine Theorems $5,6,10$, and 11 to show that no such array exists for $t<T(s)$, where $T(s)$ is a double-exponentially growing function.

From Theorem 6, if $s>3$ then $3 \nmid s$. From Theorem 5, we find that $s \mid t$ and from Theorem 10, we find that $3^{s} \mid t$. Theorem 11 gives a lower bound for the number of prime divisors p of t such that $\nu_{p}(s t) \geq 2$. For example, for $s=7$, we find that t has at least three prime divisors p such that $\nu_{p}(s t) \geq 2$, and therefore $t \geq 2^{2} \cdot 3^{7} \cdot 7=61236$. As another example, for $s=8$, we find that t has at least four prime divisors such that $\nu_{p}(s t) \geq 2$, and thus $t \geq 2^{3} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2}=64297800$. For $s=20$, we find that $t>10^{214}$. More results are given in Table 1. (Application of Theorem 4 cannot improve these results.)

We next derive an explicit lower bound for t that holds for all $s \geq 60$. To do so, we shall need the following two technical lemmas. Henceforth, a sum or product over p is taken over the primes.
Lemma 12. For all $x>1.04 \times 10^{7}$, we have

$$
\prod_{p \leq x} p>\exp (0.999 x) .
$$

Proof. We define

$$
\theta(x)=\sum_{p \leq x} \log p .
$$

Then a result due to Schoenfeld [Sch76, p. 360] gives

$$
|\theta(x)-x|<0.0077629 \frac{x}{\log x} \quad \text { for } x>1.04 \times 10^{7}
$$

Thus,

$$
\theta(x)>x\left(1-\frac{0.0077629}{\log x}\right)>0.999 x \text { for } x>1.04 \times 10^{7} .
$$

Exponentiating both sides gives the desired result.
Lemma 13. Let $c \in(0,1 / 30]$ and let S be a set of primes such that

$$
\prod_{p \in S}(1-1 / p) \leq c
$$

Then

$$
\prod_{p \in S} p>2.71^{1.72^{1 / c}}
$$

Proof. Let $p_{1}<\cdots<p_{n}$ denote the first n primes, where n is the smallest natural number such that

$$
\prod_{i=1}^{n}\left(1-1 / p_{i}\right) \leq c
$$

Since $\prod_{p \in S}(1-1 / p) \leq c$, we have $|S| \geq n$ and so

$$
\prod_{p \in S} p \geq p_{1} \cdots p_{n}
$$

Hence, it is sufficient to choose x such that

$$
\begin{equation*}
\prod_{p \leq x}(1-1 / p) \leq c \tag{10}
\end{equation*}
$$

and then show

$$
\begin{equation*}
\prod_{p \leq x} p>2.71^{1.72^{1 / c}} \tag{11}
\end{equation*}
$$

Taking logarithms on both sides of (10), we find that

$$
\begin{equation*}
-\sum_{p \leq x} \sum_{k \geq 1} \frac{1}{k p^{k}} \leq \log c \tag{12}
\end{equation*}
$$

using $\log (1-y)=-\sum_{k \geq 1} y^{k} / k$ for $|y|<1$. For all real $z \geq 2$, we have

$$
\sum_{k \geq 2} \frac{1}{k z^{k}} \leq \frac{1}{2 z^{2}}+\frac{1}{3 z^{3}}+\frac{1}{4 z^{4}} \sum_{k \geq 0} \frac{1}{z^{k}} \leq \frac{1}{2 z^{2}}+\frac{1}{3 z^{3}}+\frac{1}{2 z^{4}}
$$

Hence

$$
\sum_{p \leq x} \sum_{k \geq 2} \frac{1}{k p^{k}} \leq \frac{1}{2} \sum_{p} \frac{1}{p^{2}}+\frac{1}{3} \sum_{p} \frac{1}{p^{3}}+\frac{1}{2} \sum_{p} \frac{1}{p^{4}} \leq 0.33
$$

using bounds on the prime zeta function $\sum_{p} p^{-s}$ (see [Slo, A085548, A085541, A085964], for example). Thus, from (12),

$$
-\log c \leq \sum_{p \leq x} \frac{1}{p}+0.33
$$

It follows from

$$
\sum_{p \leq x} \frac{1}{p} \leq \log \log x+0.27+\frac{1}{(\log x)^{2}}
$$

(see [BS96, Thm. 8.8.5], for example) that

$$
\begin{equation*}
-\log c \leq \log \log x+0.6+\frac{1}{(\log x)^{2}} \tag{13}
\end{equation*}
$$

Now from (10) and $c \leq 1 / 30$ we find that $x>1.04 \cdot 10^{7}$, which implies that $1 /(\log x)^{2}<0.004$. Then from (13) we obtain

$$
-\log c<\log \log x+0.604
$$

and therefore $x>N(c)$, where

$$
N(c)=\exp \left(c^{-1} e^{-0.604}\right) .
$$

Since $N(c)>1.04 \cdot 10^{7}$, we have by Lemma 12,

$$
\prod_{p \leq x} p \geq \prod_{p \leq N(c)} p>\exp \left(0.999 \exp \left(0.546 c^{-1}\right)\right)>2.71^{1.72^{1 / c}},
$$

proving (11) as required.
We now state the main result of this section.
Corollary 14. Suppose that there exists a 3-phase Barker array of size $s \times t$ with $3 \mid t$ and $s \geq 60$. Then

$$
t>\frac{3^{s}}{9 s} \cdot 7.344^{1.311^{s}}
$$

Proof. Recall from Theorems 5 and 6 that $s \mid t$ and $3 \nmid s$. Let $n=\nu_{3}(t)$ and let r be the product of all primes $p \neq 3$ such that $\nu_{p}(s t)=1$. Furthermore, let s_{1} and t_{1} be such that $s \mid s_{1}$ and $\left(s, t_{1}\right)=1$ and $t=3^{n} s_{1} t_{1} r$. Then, from Theorem 11 we have

$$
\prod_{p \mid 3 s_{1} t_{1}}(1-1 / p) \leq 2 / s
$$

By assumption, $2 / s \leq 1 / 30$ and therefore, by Lemma 13,

$$
\begin{equation*}
\prod_{p \mid 3 s_{1} t_{1}} p>2.71^{1.72^{s / 2}} \tag{14}
\end{equation*}
$$

If $p \mid t_{1}$, then $p^{2} \mid t_{1}$ and hence

$$
t \geq 3^{n} s_{1} t_{1} \geq \frac{3^{n}}{9 s} \prod_{p \mid 3 s_{1} t_{1}} p^{2}
$$

since every prime factor of s_{1} is also a prime factor of s. By Theorem 10 , $n \geq s$ and therefore from (14),

$$
t>\frac{3^{s}}{9 s} \cdot 2.71^{2 \cdot 1.72^{s / 2}}>\frac{3^{s}}{9 s} \cdot 7.344^{1.311^{s}}
$$

as required.

As an example of how quickly this function grows, we note that, if a 3phase Barker array of size $s \times t$ exists with $3 \mid t$, then for $s=61$ we get $t>10^{12919604}$; for $s=70$ we get $t>10^{147799386}$; and for $s=80$ we find that t must have more than 2.2 billion digits!

5. Final Remarks

Lemma 2 was established by Turyn [Tur68, p. 211] for $s=1$, which implies that a 3 -phase Barker array of size $1 \times 3 q$ gives rise to a circulant complex Hadamard matrix whose elements are third roots of unity [Tur68, p. 211] and to a relative difference set [MN09]. Some nonexistence results for these objects have been derived in [Tur68] and [MN09] and references therein. These, of course, imply nonexistence results for 3-phase Barker arrays of size $1 \times 3 q$. In particular, we can deduce the case $s=1$ of Theorem 4 from [Tur68, p. 211]. Moreover, as reported in [Jed08], it has been verified by an exhaustive search that there is no 3 -phase Barker array of size $1 \times t$ for $10 \leq t \leq 76$.

We have restricted our analysis of 3-phase Barker arrays of size $s \times t$ to the case $3 \mid s t$. Indeed, the approach taken in this paper does not seem to be directly applicable to the case $3 \nmid s t$. The reason is that the proof of Proposition 3 relies crucially on the property that $P_{A}(u, v)$ is independent of v for $(u, v) \neq(0,0)$. This property does not hold for 3 -phase Barker arrays in general. For example, take $A=\left[1, \omega, \omega, \omega^{2}, \omega, \omega, 1\right]$, which is a 3 -phase Barker array of size 1×7 satisfying $\left(P_{A}(0, v): 0 \leq v<7\right)=$ (7, 1, -2, 1, 1, -2, 1).

We have, however, verified the nonexistence of 3-phase Barker arrays of many small sizes by exhaustive search. Table 2 shows a summary of the search results combined with Theorem 4. Based on the data and the results of this paper, we conjecture that there is no 3 -phase Barker array of size $s \times t$ with $s, t>1$, except when $s=t=2$ or $s=t=3$.

Table 2. Restrictions on t for a 3 -phase Barker array of size $s \times t$ with $(s, t) \neq(2,2)$

s	$t \geq$
2	31
4	20
5	10
7	8

References

[AS89] S. Alquaddoomi and R. A. Scholtz. On the nonexistence of Barker arrays and related matters. IEEE Trans. Inf. Theory, 35(5):1048-1057, 1989.
[Bar53] R. H. Barker. Group synchronization of binary digital systems. In W. Jackson, editor, Communication Theory, pages 173-187. Academic Press, New York, 1953.
[BS96] E. Bach and J. Shallit. Algorithmic Number Theory, Volume I: Efficient Algorithms. Foundations of Computing. The MIT Press, Cambridge, MA, 1996.
[DJS07] J. A. Davis, J. Jedwab, and K. W. Smith. Proof of the Barker array conjecture. Proc. Amer. Math. Soc., 135:2011-2018, 2007.
[GS65] S. W. Golomb and R. A. Scholtz. Generalized Barker sequences. IEEE Trans. Inf. Theory, IT-11(4):433-437, 1965.
[Jed08] J. Jedwab. What can be used instead of a Barker sequence? Contemp. Math., 461:153-178, 2008.
[Lan94] S. Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2nd edition, 1994.
[LS12] K. H. Leung and B. Schmidt. New restrictions on possible orders of circulant Hadamard matrices. Des. Codes Cryptogr., 64:143-151, 2012.
[MN09] S. L. Ma and W. S. Ng. On the non-existence of perfect and nearly perfect sequences. Int. J. Inf. Coding Theory, 1(1):15-38, 2009.
[Sch76] L. Schoenfeld. Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$. II. Math. Comp., 30(134):337-360, 1976.
[Slo] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http://oeis.org.
[Tur68] R. J. Turyn. Sequences with small correlation. In Henry B. Mann, editor, Error Correcting Codes. Wiley, New York, 1968.
[Tur74] R. J. Turyn. Four-phase Barker codes. IEEE Trans. Inf. Theory, 20(3):366-371, 1974.

[^0]: Date: 1 June 2013 (revised 17 September 2013).
 J. Bell is with Department of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. Email: jpbell@uwaterloo.ca.
 J. Jedwab is with Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. Email: jed@sfu.ca.
 M. Khatirinejad email: mahdadk@gmail.com.
 K.-U. Schmidt is with Faculty of Mathematics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany. Email: kaiuwe.schmidt@ovgu.de.
 J. Bell and J. Jedwab are supported by NSERC. K.-U. Schmidt was supported by German Research Foundation.

