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ABSTRACT. A 3-phase Barker array is a matrix of third roots of unity
for which all out-of-phase aperiodic autocorrelations have magnitude 0
or 1. The only known truly two-dimensional 3-phase Barker arrays have
size 2 X 2 or 3 x 3. We use a mixture of combinatorial arguments and
algebraic number theory to establish severe restrictions on the size of a 3-
phase Barker array when at least one of its dimensions is divisible by 3.
In particular, there exists a double-exponentially growing arithmetic
function T such that no 3-phase Barker array of size s X t with 3 | ¢
exists for all ¢ < T(s). For example, T'(5) = 4860, T'(10) > 10!, and
T(20) > 10?**. When both dimensions are divisible by 3, the existence
problem is settled completely: if a 3-phase Barker array of size 3r x 3¢
exists, then r = ¢ = 1.

1. INTRODUCTION

We define an array of size s x t to be an infinite matrix A = (a;;) of
complex-valued elements satisfying

a;; =0unless 0 <i<sand 0 < j <t.

We call A an H-phase array if a;; is an H-th root of unity for each i, j
satisfying 0 < ¢ < s and 0 < j < t. For integers v and v, the aperiodic
autocorrelation of A = (a;;) at shift (u,v) is defined to be

Ca(u,v) = Z @i Aitu,j4v-
1]

Notice that Cs(u,v) =0 for |u| > s or |v| > ¢. Arrays with small aperiodic
autocorrelation at all nonzero shifts have a wide range of applications in
digital communications, including synchronisation [Bar53] and radar [AS89].
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We would like to find 2-phase arrays A of size s x t satisfying
(1) |Ca(u,v)] <1 forall (u,v) # (0,0),

in which case A is called a Barker array [AS89]. However, the only s x t
Barker arrays with s,t > 1 have size 2 x 2, as conjectured by Alquaddoomi
and Scholtz [AS89] and proved by Davis, Jedwab, and Smith [DJS07]. See
Leung and B. Schmidt [LS12] for recent nonexistence results for Barker
sequences (namely 1 x ¢ Barker arrays).

A possible alternative to Barker arrays is to consider H-phase arrays
A satisfying (1), in which case we call A an H-phase Barker array. In
order to allow efficient implementation, it is desirable to limit H to a small
number, and we will be interested in the case H = 3. Alquaddoomi and
Scholtz [AS89] exhibited the 3-phase Barker array

1 1 1
1 w W,
1 w? w

where throughout this paper w denotes a primitive third root of unity (note
that the Barker property of a 3-phase array does not depend on the partic-
ular choice of w). Another example is

b

There also exist 3-phase Barker sequences of length ¢ for t € {2,3,4,5,7,9}
[GS65], but it has been conjectured since at least 1968 [Tur68, p. 211] that
no further such sequences exist.

We adapt some of the ideas in [DJS07], used to establish the nonexistence
result for 2-phase Barker arrays, and combine them with new combinatorial
and algebraic number theoretic arguments to prove severe restrictions on
the size of 3-phase Barker arrays of size s x t when st is divisible by 3. In
particular, there exists a double-exponentially growing arithmetic function
T such that no 3-phase Barker array of size s x ¢ with 3 | ¢ exists for all
t < T(s). For example,

T(5) = 4860, T(10) > 10!, and 7(20) > 10%.

When both dimensions are divisible by 3, the existence problem is settled
completely: if a 3-phase Barker array of size 3r x 3¢ exists, then r = ¢ = 1.

2. SEMIPERIODIC AUTOCORRELATION OF A 3-PHASE BARKER ARRAY

Given an array A = (a;;) of size s x ¢t and integers u and v, we follow
Alquaddoomi and Scholtz [AS89, Sec. V] and define the semiperiodic auto-
correlation of A at displacement (u,v) to be

(2) Pa(u,v) = Cy(u,v) + Ca(u,v—1t) for 0 <wv <t
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By convention, any expression involving Pa(u,v) implicitly refers only to
values of (u,v) for which P4 (u,v) is defined. In terms of the elements of A,

we can write
t—1

Pa(u, U) = Z Z Qi Ay, (j-+v) mod ¢
i j=0
In the following lemma, we establish restrictions on P4(u,v) when A is a
3-phase array. We then apply this lemma to 3-phase Barker arrays of size
s x t with 3 | t. This generalises Turyn’s analysis [Tur68], [Tur74] of the
one-dimensional case.

Lemma 1. Let A = (a;;) be a 3-phase array of size s x t and write
Pa(u,v) = Qa(u,v) + w Ra(u,v),
where Qa(u,v) and Ra(u,v) are integer-valued. Then

(3) Qa(u,v) = Qa(u,v') (mod 3)
and
(4) Ra(u,v) = Ra(u,v’) (mod 3)

for all (u,v,v").

Proof. Since P4(u,v) is a sum of (s — |u|)t terms, each of which is a third
root of unity, we can write

Pa(u,v) = By + Biw + Baw?
for nonnegative integers By, B1, and Bs satisfying
(5) By + B1 + By = (s — |u])t.
Using the identity w? = —1 — w, we find that
Pa(u,v) = (Bg — Ba) + (B; — By)w.
We therefore have
Qa(u,v) + Ra(u,v) = By + By — 2By,
which together with (5) gives

(6) Qa(u,v) + Ra(u,v) = (s — |ul)t (mod 3).
Now consider the product
t—1
T eis@ima ooy moas = 1P0wP (0?)P> = WP =P = WRaluw),
i =0

which is independent of v. This proves assertion (4) and assertion (3) then
follows from (6). O

Lemma 2. Suppose that A is a 3-phase Barker array of size s X t with 3 | t.
Then
Pa(u,v) =0 for all (u,v) # (0,0).
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Proof. Note that in Q(w) we have the factorisation
a+bw+ cw? = ((a—d)+ (d—c)w)(1 —w),

where d = (a + b + ¢)/3. Hence every sum of 3m third roots of unity is
divisible by 1 —w over Z[w]. Furthermore, 0 is the only element of Z[w] that
has magnitude at most 1 and is divisible by 1 — w.

Since C4(u,0) is a sum of (s — |u|)t third roots of unity for |u| < s, and
by assumption 3 | ¢, the Barker property (1) then forces C'4(u,0) = 0 for all
u # 0. Hence P4(u,0) = Ca(u,0) + Cy(u,—t) =0 for all u # 0. Also, since
P4(0,0) = st, we conclude that P4(u,0) is an integer divisible by 3 for all .
Then, for arbitrary u and v, Lemma 1 implies that P4 (u,v) = 3n+ 3n'w for
some integers n and n’ (depending on u and v). On the other hand, by the
definition (2) of P4(u,v) and the Barker property, we have |Pa(u,v)| < 2
for (u,v) # (0,0). Hence P4(u,v) =0 for all (u,v) # (0,0). O

Lemma 2 is now used to prove the following result, which will be our main
tool for the remainder of this paper.

Proposition 3. Suppose that A = (ai;) is a 3-phase Barker array of size
s x t with 3 [ t, and write fi(x) = >, a;;z’. Let ¢ be a t-th root of unity.
Then there exists some I = I(() satisfying 0 < I < s such that

a2 JO o fori#I
}fl(ol _{st fori=1.

Proof. Define the polynomial
9W) =D [y =D aiy'dd
( i,J
Straightforward manipulations give

9W)gly™) = Pa(u,v)y ¢,

so that by Lemma 2, g(y)g(y—!) = st. This forces g(y) to be a monomial,
for if cxy* and ¢yt are the highest-degree and lowest-degree monomials in
g(y), respectively, and k > £, then g(y)g(y~!) contains ccgy*~¢. Therefore,
g(y) = ey’ for some ¢ € Q(w,¢) of magnitude /st and some I = I(¢)
satisfying 0 < I < s, which completes the proof. O

If a 3-phase Barker array of size s x t with 3 | ¢ exists, then Proposition 3
determines a partition of the ¢-th roots of unity into s sets. Moreover, if ¢
belongs to one of these sets, then all roots of the minimal polynomial of
over Q(w) must belong to the same set.

For later reference, we note that, if ¢ is a primitive m-th root of unity,
then the degree of the minimal polynomial of ¢ over Q(w) is ¢(m)/2if 3 | m
and is ¢(m) otherwise (and so in this case the minimal polynomial is the
m-th cyclotomic polynomial).
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3. CONSEQUENCES OF PROPOSITION 3

In this section, we use Proposition 3 to prove severe restrictions on the
size of a 3-phase Barker array. Throughout this section, we use the following
notation. For a positive integer n, we let (,, denote the primitive n-th root
of unity 2™/™. Given a prime p and a nonzero integer n, we let vp(n) denote
the p-adic valuation of n; that is, vp(n) is the unique nonnegative integer
with the property that p*»(™) divides n but p*»(™*1 does not.

We begin with an elementary result that restricts the prime divisors of
the number of nonzero elements in a 3-phase Barker array.

Theorem 4. Suppose that there exists a 3-phase Barker array of size s X t
with 3 | t. Then vy(st) is even for every prime p =2 (mod 3).

Proof. Taking ¢ = 1 in Proposition 3, we see that st = vv for some v € Z|w|.
In Z[w], the prime 3 ramifies and primes p = 1 (mod 3) split, whereas primes
p =2 (mod 3) remain inert. The theorem follows. O

For example, there are no 3-phase Barker arrays of size 2 x 3, 5 x 9, and
10 x 15.

If there exists a 3-phase Barker array of size s x ¢t with 3 | ¢, then Propo-
sition 3 determines a partition of the t-th roots of unity into s sets. We
now show that all of these sets must have equal size t/s, which forces s to
divide t.

Theorem 5. Suppose that there exists a 3-phase Barker array (a;;) of size
s x t with 3 | t, and write fi(x) = >_;a;z’. Then, for each i satisfying
0<1<s,

{k € Z)UZ: [i(¢F) # 0} = t/s.

In particular, s divides t.

Proof. If (a;;) is an arbitrary array of size s x ¢, then, for each ¢,

1 t—1 1 t—1 | t—1 2 1 t—1
ki
gZ’fz‘(Cf)’Q =4 DD aiig| = 5 > lai;?
k=0 k=0 | j=0 =0

by Parseval’s identity. If (a;;) is a 3-phase Barker array, the right-hand side
equals t/s for each i satisfying 0 < i < s and, by Proposition 3, the left-hand
side counts the number of k € Z/tZ such that f;(¢F) # 0. O

Theorem 5 can be used to prove the following nonexistence result.

Theorem 6. Suppose that there exists a 3-phase Barker array of size s X t
with 3 | s and 3 |t. Then s =1 = 3.

Proof. Write the 3-phase Barker array as A = (ai;). By application of
Theorem 5 to A and AT (which is also a 3-phase Barker array), we conclude
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that s | ¢t and ¢ | s, hence s = ¢t. By Proposition 3, there exists some I
satisfying 0 < I < s for which

t—1

> agdl

=0

=1.

Hence, arg(anCg) is constant for all j satisfying 0 < j < ¢, forcing s =t =3
since ayj € {1, w,w?}. O

Combining Theorems 5 and 6 shows for example that, if there exists a
3-phase Barker array of size s x 3" with n > 2, then s = 1; it then follows
from [Tur68, pp. 205 and 211] that n = 2.

Recall that, if a 3-phase Barker array of size s x ¢t with 3 | ¢ exists, then
Proposition 3 partitions the ¢-th roots of unity into s sets, according to the
associated value of I, and by Theorem 5 each of these sets has size ¢/s. In
Theorems 10 and 11 below, we derive constraints on the possible values of
s and t. Our strategy in the proof of Theorem 10 will be to write t = 3"¢,
where 3 1 ¢, and determine an upper and lower bound on the number of
distinct values of I associated with the following 3™-th roots of unity:

17 C37 <§7 €97 <g7 7<3"7 C_I%"

Our strategy in the proof of Theorem 11 will be to write ¢ = #yr, where
3 | to and 3 1 r and r is square-free, and determine a lower bound on the
size of the set associated with a specific primitive tg-th root of unity. In
preparation for these theorems, we prove the following result.

Proposition 7. Let n and t > 0 be integers, and let p be a prime divisor
of t. Suppose that a polynomial f € Z|w][x| has the property that for each t-
th root of unity ¢, | f(C)|? is integral and vy(|f(¢)|?) = n whenever f(¢) # 0.
Suppose also that n is a t-th root of unity whose order is not divisible by p
and that f(n) # 0. Then:

(i) In the case p # 3,
{,7 € {1727"'ﬂ1/p(t)} : f(n‘CpJ') #0}

has cardinality at least vy(t) — n/2 and, for each k coprime to p,
F(1-Gpr) = 0 if and only if (n- k) = 0.

(ii) In the case p =3,

(7) {G.k) € {12, ws()} x {1,2}: f(n- G3y) # 0}
has cardinality at least 2vs(t) — n, and, for each k and { satisfying
0#k=/{ (mod 3), f(n- Cécj) =0 if and only if f(n- ng) = 0.

(i4i) In the case p = 3, suppose further that f(1) # 0 and 0 < v3(|f(1)|?) <
2u3(t) and

fl@)=Q+a+-+2"7h) e (1 - w)Zw][a].

Then the set (7) has cardinality at least 2v5(t) —n + 1.
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Before we prove Proposition 7, we introduce some standard notation and
prove an auxiliary result. Let ®,(x) be the n-th cyclotomic polynomial.
The following result can be easily proved by induction (see [Lan94, p. 74],
for example) or by Mébius inversion of n =[]y, 41 ®a(1).

Lemma 8. Let n > 1 be an integer. If n is a power of a prime p, then
®,,(1) = p; otherwise, P, (1) = 1.

Given a finite extension K of Q and o € K, we let N¥(a) denote the
norm of «; that is, N¥(a) is the product of o(«a), where o ranges over the
[K : Q] complex embeddings of K into C.

Lemma 9. Let n be a positive integer, let d and p be divisors of n with p
prime, and write K = Q({,). Let ¢ be a primitive d-th root of unity. Then

otherwise.

up(NK(l _¢) = {g(n)/gb(d) if d is a power of p;

Proof. Since K is a Galois extension of Q, we have
N¥1-¢0= ] (-0,
oeGal(K)

where Gal(K) denotes the group of field automorphisms of K. Let F' = Q((),
so that F'is a Galois extension of Q of degree ¢(d) and K is a Galois exten-
sion of F' of degree ¢(n)/¢(d). Each automorphism of F' lifts to ¢(n)/¢(d)
automorphisms of K, and therefore,

NEQ=O= [ (-,

re€Gal(F)
Since
d
[T a-=)= [ a-¢) =24
TeGal(F) d:=

we find that

vp(N*(1=0)) = 1, (®a(1)) ¢(n)/(d).
The result now follows from Lemma 8. O

We are now ready to prove Proposition 7.

Proof of Proposition 7. We first prove (i). Since the order of 7 is not divis-
ible by p and p # 3, we have

[@(wa n, ij) : Q(wa 77)} - [@(Cpﬂ) : Q]
for each natural number j. In particular, the identity automorphism of
Q(w,n) lifts to exactly ¢(p’) distinct automorphisms of Q(w,n,¢,). If o
is one of these ¢(p’) liftings, then o extends naturally to polynomials in
Q(w,n,pi)[z]. Then, since o(f) = f, we have f(n- () = 0 if and only
if f(n-0(¢,)) = 0. But as o ranges over the ¢(p’) liftings of the identity
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automorphism of Q(w,n), the image o(,;) ranges over all primitive p-th
roots of unity, proving the second part of (i).

Now write S = {j € {1,2,...,5(t)} : f(n-(u) =0} and K = Q({)-
We must show 'that |S| < n/2. If j € S, then we have f(7 - Csj) = 0 for all
k coprime to p’/. Thus

P’
=11 II @-n
jES k=1

(k,p)=1

ﬁivides f(z) in Z[¢][z]. Tt follows that N¥(g(n)) divides N¥(f(n)) and
(8) vp (N*(9(m)) < vp (NE(£(1))) = 6(t) /2,

using (] f(n)|?) = n. From Lemma 9 with n =t and d = p/ and ¢ = Cp],
we find that

=> Z vp(N (n—n-¢5))

jeS k=1
(k,p)=1

—Z Z vp (N (1~ fﬂ))

eSS k=1
I (k,p)=1

B!

cS k=1
J (k,p)=1

=> o)
jes
= o()[S]-
Thus, after combination with (8), we get |S| < n/2, as required.
The proof of (ii) is similar to (i), except that we now have

[Qw,n,¢35) : Qw,n)] = 5 - [Q(G4) : Q

and, if C;fj and g;fj are two primitive 37-th roots of unity, then, among the
#(37)/2 liftings of the identity automorphism of Q(w,n) to Q(w,n, (3;), there
is one that sends Céfj to ng if and only if £ = ¢ (mod 3). The remainder of
the argument is identical to that employed in establishing (i), taking

S={0.k) €{1,2,...,ms(t)} x {1,2} : f(n-C3;) = 0}

and

37
H H (55—77'<§j)

i (=1
(Gk)es k=¢ (mod 3)
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to show that |S| < n.
We shall now prove (iii) by applying (ii), with n replaced by n — 1, to

fol@) =1 —w)™ (fla) = L+z+---+2').

By assumption, fy € Z[w][z]. From the assumptions, we also have f(1) # 0
and so v3(|f(1)[?) = n and so 0 < n < 2u3(t). Let ¢ be a t-th root of unity.
We need to show that |fo(¢)|? is integral and that v3(|fo(¢)?) = n — 1
whenever fo(¢) # 0. In the case that ¢ # 1, this follows from |fo(¢)|> =
|£(¢)[?/3 and the assumption that v3(|f(¢)|?) = n > 0 whenever f({) # 0.
In the case that ¢ = 1, we have |fo(1)|? = |f(1) — t|*/3. Since n < 2v3(t),
by extending the 3-adic valuation v3 from Z to Z[w] via v3(1 —w) = 1/2 we
find that v3(f(1)) < v3(t) and so v3(|fo(1)[?) = n — 1, as required. These
calculations also show that fo(n) # 0. We may therefore apply (ii), with n
replaced by n — 1, to fo(z). Since the order of n is not divisible by 3, we
have f0(77 ’ ng) = (1 - W)_lf(ﬁ ’ ng) for all (.7) k) S {17 2., V3(t)} X {L 2}
and we therefore obtain (iii). O

We next prove two consequences of Propositions 3 and 7.

Theorem 10. Suppose that there exists a 3-phase Barker array of size s X t
with 3 |t and 31s. Then s < v3(t).

Proof. Let (a;j) be the 3-phase Barker array and write fi(z) = }; a;;2’
Let n = v3(t), so that ¢ = 3"¢ for some ¢ not divisible by 3.
We write V = {1,2,...,n} x{1,2} and consider the cardinality of the set

R={I(¢): (j.k) €V},

with the function I as given in Proposition 3.

We know from Proposition 3 that ‘ fray(¢ )‘2 is either 0 or st for each
t-th root of unity ¢, and by definition f7(;)(1) # 0. Since 3 { s, we have
v3(st) = v3(t) = n. Then, taking n = 1 and f = f;(;) in Proposition 7 (iii),
we find that {(j, k) € V : fl(l)((é“j) # 0} has cardinality at least n + 1.
Therefore, by Proposition 3, the number of values (j,k) € V for which
I(Céfj) = I(1) is at least n + 1, hence |R| < n.

On the other hand, fix a value ¢ € {0,1,...,s — 1} \ {I(1)} and let 7 be
a primitive 3"-th root of unity. Then

3n—1
S REP = 3i
=0
Z
=0

by Parseval’s identity. Since 3 J( q, the right-hand side is nonzero and so
f;(7) is nonzero for some integer £. Now the polynomial 23" — 1 splits into

3" _

1 q—1
je E
T azk3n+j
=0 =

2

-1
=0 | j=

q—
§ @ k-3 +j

k=

)
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2n+1 irreducible factors over Q(w), and the minimal polynomials over Q(w)
of

]-7 C37 C??a C97 C92a . 'aC3”a C??"

are all distinct. Since the value of I in Proposition 3 is the same for all roots
of a given minimal polynomial, it follows that fi((gj) is nonzero for some
(4, k) € V. Therefore, for each i € {0,1,...,s—1}\ {I(1)}, there is at least
one value of (j, k) € V for which I(¢%;) = i, hence |R| > s.

Combining results, we find that s < n. (|

Theorem 11. Suppose that there exists a 3-phase Barker array of size s X t
with 3 | t. Write t = tor, where r is the product of all primes p # 3 dividing t
such that vy(st) = 1. Then

[[a-1/p) <2/s,

plto

where the product is taken over all prime divisors of tg.

Proof. Since s | t by Theorem 5, v,(st) = 1 implies 1,(t) = 1 for every prime
p. Let (ai;) be the 3-phase Barker array and write fi(z) = >_; aijz’. Let
be a primitive tp-th root of unity. By Proposition 3, there exists I such that
|f1(n)|? = st, and | f7(¢)|? is either 0 or st for each ¢-th root of unity ¢. Let
d be a divisor of r, noting that d is square-free and not divisible by 3. We
claim that

(9) fr(n-¢¥) #0 for all k coprime to d,

which we prove by induction on the number of prime divisors of d. In the
case that d is prime, (9) is an immediate consequence of Proposition 7 (i).
Now, suppose that (9) is true for all d having at most £ — 1 prime divisors.
If d has ¢ prime divisors, write d = d'p for some prime divisor p of d and let

k be coprime to d. Then C§+d, = (¢ - (p and so

Frin - PRy = fr(n- ¢ - k) £ 0

by the inductive hypothesis and by Proposition 7 (i) with n = 1 and f = fr
and 7 replaced by n - Cg,. Since (p+d',d) =1 (because d is square-free), this
implies that (9) is true when d has ¢ prime divisors and so completes the
induction.

Now, since 3 | tp and (t9,d) = 1, the minimal polynomial of n - {; over
Q(w) has degree ¢(tod)/2 = ¢(to)p(d)/2. Since fr(n-(q) # 0 for all d | r
by (9), we conclude that

(k€ Z/tZ - f1(¢F) # 0} = d(to)p(d)/2 = p(to) /2.
d|r

Thus, by Theorem 5, t/s > ¢(to)r/2, and so ¢(to)/to < 2/s, from which the
theorem follows. (]
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TABLE 1. Restrictions on ¢ for a 3-phase Barker array of size

s X t with 3 | ¢.
s | t>
2 18
4 324
) 4860
7 61236
8 64297800
10 591671570490
11 466 344774195 300
13 | 548127023 739189674 570891 100

4. EXPLICIT BOUNDS ON s AND ¢

In this section, we consider the existence of a 3-phase Barker array of size
s X t with 3 | t. We combine Theorems 5, 6, 10, and 11 to show that no
such array exists for t < T'(s), where T'(s) is a double-exponentially growing
function.

From Theorem 6, if s > 3 then 3t s. From Theorem 5, we find that s | ¢
and from Theorem 10, we find that 3° | . Theorem 11 gives a lower bound
for the number of prime divisors p of ¢ such that v,(st) > 2. For example, for
s =7, we find that ¢ has at least three prime divisors p such that v,(st) > 2,
and therefore ¢t > 22 .37 .7 = 61236. As another example, for s = 8, we
find that ¢ has at least four prime divisors such that v,(st) > 2, and thus
t>23.3%.52.72 = 64297800. For s = 20, we find that t > 10?'*. More
results are given in Table 1. (Application of Theorem 4 cannot improve
these results.)

We next derive an explicit lower bound for ¢ that holds for all s > 60. To
do so, we shall need the following two technical lemmas. Henceforth, a sum
or product over p is taken over the primes.

Lemma 12. For all x > 1.04 x 107, we have
H p > exp(0.999z).

p<x
Proof. We define
0(x) = Z log p.
p<z
Then a result due to Schoenfeld [Sch76, p. 360] gives
x

0(z) — 2| < 0.0077629 1 for 2 > 1.04 x 10".

og x
Thus,

0.0077629
B log x

0(x) > :c<1 ) > 0.999z for z > 1.04 x 10”.
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Exponentiating both sides gives the desired result. U
Lemma 13. Let ¢ € (0,1/30] and let S be a set of primes such that
[[Ta-1/p<e
peS
Then
[1»> 2707,
peS

Proof. Let p; < --- < p, denote the first n primes, where n is the smallest

natural number such that
n

[T —1/p) <e

i=1
Since [[,c5(1 —1/p) < ¢, we have |S| > n and so

Hp2p1---pn

Hence, it is sufficient to choose x such that
(10) [[a-1/p)<e
p<w

and then show

(11) [Ir>27t7"

p<w
Taking logarithms on both sides of (10), we find that
2 Y e

p<z k>1

using log(1 —y) = =3 ;51 ¥ /k: for |y| < 1. For all real z > 2, we have

1 1
I;kak_%z 4z4zzk_222 +24'
Hence ) L ) ) 1
szpk_QZ +SZF+§Z?§0'33
p<z k>2 P P

using bounds on the prime zeta function ), p~* (see [Slo, A085548, A085541,
A085964], for example). Thus, from (12),

—logc < Z ! + 0.33.
p<z
It follows from
Zl < loglogx + 0.27 +

p<z

b
(log z)?
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(see [BS96, Thm. 8.8.5], for example) that
1
(logz)?"

Now from (10) and ¢ < 1/30 we find that # > 1.04 - 107, which implies that
1/(log z)? < 0.004. Then from (13) we obtain

(13) —loge <loglogz + 0.6 +

—log ¢ < loglog x + 0.604
and therefore z > N(c), where
N(c) = exp(c™te 0604y,
Since N(c) > 1.04 - 107, we have by Lemma 12,
[Tr=> I »> exp(0.999exp(0.546c71)) > 271172,
p<z p<N(c)
proving (11) as required. O
We now state the main result of this section.

Corollary 14. Suppose that there exists a 3-phase Barker array of size s Xt
with 3 |t and s > 60. Then

3s .
> . 7.3441311°
9s

Proof. Recall from Theorems 5 and 6 that s | ¢ and 31 s. Let n = v3(¢t) and
let r be the product of all primes p # 3 such that v,(st) = 1. Furthermore,
let s1 and ¢; be such that s | sy and (s,t1) =1 and ¢ = 3"syt17. Then, from
Theorem 11 we have

1 —1/m) <2/s.
p|3s1ty

By assumption, 2/s < 1/30 and therefore, by Lemma 13,

(14) [T »>27mt7"
p|381t1

If p | t1, then p? | t; and hence

3n
t>3"st; > — 2
z 11_98Hp

p|3s1ty

since every prime factor of s; is also a prime factor of s. By Theorem 10,
n > s and therefore from (14),

3° S '
t> S 27132 S S g g
9s 9s

as required. O
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As an example of how quickly this function grows, we note that, if a 3-
phase Barker array of size s x t exists with 3 | ¢, then for s = 61 we get
t > 1012919604, for 5 — 70 we get ¢t > 10147799386, and for s = 80 we find that
t must have more than 2.2 billion digits!

5. FINAL REMARKS

Lemma 2 was established by Turyn [Tur68, p. 211] for s = 1, which implies
that a 3-phase Barker array of size 1 x 3¢ gives rise to a circulant complex
Hadamard matrix whose elements are third roots of unity [Tur68, p. 211]
and to a relative difference set [MNO09]. Some nonexistence results for these
objects have been derived in [Tur68] and [MNO09] and references therein.
These, of course, imply nonexistence results for 3-phase Barker arrays of
size 1 x 3q. In particular, we can deduce the case s = 1 of Theorem 4 from
[Tur68, p. 211]. Moreover, as reported in [Jed08], it has been verified by
an exhaustive search that there is no 3-phase Barker array of size 1 x ¢ for
10 <t < 76.

We have restricted our analysis of 3-phase Barker arrays of size s x t to
the case 3 | st. Indeed, the approach taken in this paper does not seem to
be directly applicable to the case 3 { st. The reason is that the proof of
Proposition 3 relies crucially on the property that P4(u,v) is independent
of v for (u,v) # (0,0). This property does not hold for 3-phase Barker
arrays in general. For example, take A = [1,w,w,w? w,w,1], which is a
3-phase Barker array of size 1 x 7 satisfying (P4(0,v) : 0 < v < 7) =
(7,1,-2,1,1,-2,1).

We have, however, verified the nonexistence of 3-phase Barker arrays of
many small sizes by exhaustive search. Table 2 shows a summary of the
search results combined with Theorem 4. Based on the data and the results
of this paper, we conjecture that there is no 3-phase Barker array of size
s x t with s,t > 1, except when s=t=2or s=t=3.

TABLE 2. Restrictions on ¢ for a 3-phase Barker array of size
s x t with (s,t) # (2,2)

s t>
2 31
4 20
5 10
7 8
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